Vector Calculus 20E, Spring 2012, Lecture B, Midterm 1

Fifty minutes, four problems. No calculators allowed.

Please start each problem on a new page.

You will get full credit only if you show all your work clearly.

Simplify answers if you can, but don't worry if you can't!

- 1. Calculate the integral of $f(x,y)=xe^{-y}$ over the triangle in \mathbb{R}^2 formed by the lines x=0, y=0, and x+y=1.
- 2. Calculate the integral of the function f(x, y, z) = z along the curve given by $(t, \frac{2}{3}t^{\frac{3}{2}}, t)$, where $2 \le t \le 7$.
- 3. Let $D^* = \{(u,v) : u^2 + v^2 \le 1\}$ and let D be the image of D^* under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $x = u^3, y = v^3$. Calculate the area of D. (Hint: the following formulae may be useful.)

$$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$$

$$\cos^2\theta = \frac{1}{2}(1 + \cos 2\theta)$$

4. Use spherical polar coordinates to calculate the integral of the function $f(x, y, z) = z^2$ over the region of \mathbb{R}^3 between the spheres of radius 1 and 2.

Vector Calculus 20E, Spring 2013, Lecture A, Midterm 1

Fifty minutes, four problems. No calculators allowed.

Please start each problem on a new page.

You will get full credit only if you show all your work clearly.

Simplify answers if you can, but don't worry if you can't!

1. Let $g: \mathbb{R}^3 \to \mathbb{R}^2$ be a map such that g(0,0,0)=(2,3) and whose derivative Dg at (0,0,0) is given by the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$$

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x,y) = xy - x + y. Calculate the derivative $D(f \circ g)$ at (0,0,0).

2. Let D be the region between the graphs of $y = x^2$ and $y = x^3$. Compute the integral

$$\iint_D xy \, dA.$$

- 3. Let $D^* = \{(u,v) : 0 \le u \le 1, \ 0 \le v \le 1\}$ and let D be the image of D^* under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(u,v) = (u^2v,uv^2)$. Calculate the area of D.
- 4. Let $f(x,y) = x \log y$. Find the approximation to the value of f(1.03, 1.02) given by the second-order Taylor expansion of f at (1,1).